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Abstract—Modern data centers aim to take advantage of high
parallelism in storage devices for I/O intensive applications such
as storage servers, cache systems, and database systems. Database
systems are the most typical applications that should provide a
highly reliable service with high-performance. Therefore, many
data centers running database systems are actively introducing
next-generation high-performance storage devices such as Non
Volatile Memory Express (NVMe) based Solid State Devices
(SSDs). NVMe SSDs and its protocol are characterized by
taking full advantage of the high degree of parallelism of the
device which is expected to ensure enhanced performance of
the applications. However, taking full advantage of the device’s
parallelism does not always guarantee high performance as well
as predictable performance. In particular, heavily mixed read and
write requests give rise to serious performance degradation on
throughput and response time due to the interferences of requests
in SSDs each other. To eliminate the interference in SSDs and
improve performance, this paper presents DapDB, a low-latency
Key-Value Store tailored for Open-Channel SSD with dynamic
arrangement of internal parallelism in SSDs. We divided and
isolated entire parallel units (LUNs) of the NVMe SSD into tree
type and re-arrange them to three different types of LSM-tree
base Key-value store. To implement DapDB based on RocksDB,
we used Open-Channel SSD. We modified storage backend of
RocksDB to run application-driven Flash management scheme
using Open-Channel SSD. DapDB can fully control internal
parallelism of SSD. It may take advantage of entire parallelism
for every I/O request, It can use the entire parallelism of the
SSD for every I/O request, or it can use a strategy to yield
the degree of parallelism of the I/O request to reduce the
interference between the various I/O requests. Our extensive
experiments have shown that DapDB’s Isolation-Arrangement
scheme achieves both improved overall throughput and response
time, i.e., on average 1.20× faster and 43% less than traditional
Striping-Arrangement scheme respectively.

Index Terms—Storage, NAND-flash, Open-Channel-SSD, FTL,
NVMe, LSM-tree

I. INTRODUCTION

The role of high-performance storage devices is becoming
indispensable to I/O intensive application. In particular, in
database systems, the performance of storage devices directly
affect their quality of service. Therefore, many data cen-
ters running database systems are introducing next-generation
storage devices represented by NVMe SSDs to improve
performance. In addition, to effectively utilize these high-
performance storage devices, modern database systems are
considering flash-based storage devices. For example, most
of NoSQL database or key-value store systems including
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Fig. 1: Hardware Queue Contention in NVMe SSD. Read
requests are delayed due to the write request which has long
response time relatively

RocksDB [7], Apache Cassandra [8], and HBase [9] use a
Log-Structured Merge tree (LSM-tree) [6] data structure which
works well on flash-based SSDs.

NAND-based NVMe SSDs provides higher read and write
throughput compared to spinning drives or SATA-based SSDs.
However, modern database systems do not fully utilize the
capabilities of the NVMe SSD devices. The reason for this
inefficiency is that many database systems are not designed
with thorough consideration of the features of the NVMe SSD
storage device.

On systems using NVMe-based SSD, single read requests
can be handled very rapidly, but serious performance degrada-
tion will occur if write requests are requested at the same time.
This is due to the difference in response time between read and
write requests and delays come from internal FTL operations
such as Garbage Collection (GC). Previous studies found that
performance degradation could be up to 450% under the
workloads with mixed reads and writes [17], [18]. Figure 1
shows how heavy write requests and light read requests mixed
at a H/W queue in NVMe SSD. If read requests are placed in
the same H/W as write requests, contention occurs and read
requests are delayed due to the write requests that require
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Fig. 2: Read and write throughput comparison based on
various read percentage in the workload.

long response time. Furthermore, unlike ordinary relational
database systems, in the LSM-tree based key-value store,
additional I/O requests are generated due to the compaction
operation that creates a higher-level SST file by merging
lower-level Sorted String Table (SST) files. For example,
if clients send only insert requests, underlying flash-based
storage devices must handle amplified number of write request
as well as multiple read requests due to the compaction. As a
result, this I/O amplification makes read and write requests
mixed more frequently in LSM-tree based key-value store
systems.

To quantitatively measure the performance degradation un-
der the mixed workload of reads and writes of the device
and database application on commercial NVMe SSDs [14], we
used a Flexible I/O (FIO) benchmark tool [1] and RocksDB
db bench tool [13] respectively. Figure 2a represent the re-
sult shows serious deterioration in throughput performance
depending on the degree of mixed read and write. In particular,
when read percentage is 50, that is, in a workload which reads
and writes are half occupied, the read performance is about
25.6% of read-only performance. Also, the write performance
dropped to about a quarter of the write-only performance at
the 50% read ratio. This graph shows a dramatic drop in
performance depending on the degree of mixed reads and
writes. Figure 2b illustrates that performance degradation due
to I/O interference is much more serious in RocksdB. Even if
the write request is mixed with only 10 percent and the read
request accounts for 90 percent of the total workload, the read
performance drops to a quarter of the read-only performance.
The reason for this result came from write amplification due to
the nature of the LSM-tree based key-value store that storage
devices such as SSDs must accommodate requests larger than
the client’s write requests.

Modern NVMe SSDs have a set of parallel units (e.g.,
multiple channels) and allow host hardware and software to
fully exploit the levels of parallelism. In the traditional FTL
of legacy SSDs, when a SSD controller receives incoming
write requests, it determines the data placement in such a way
that it can access NAND flash in parallel as much as possible
considering the internal geometry of the SSD. In a read-
only or write-only workload, this scheme which maximizes
the degree of parallelism represents best performance and
many SSDs vendors present these fragmentary performance
result (e.g., Sequential Read, Random Write, etc.) as their
performance indicators. However, in real-world applications

that need to serve intensive I/O at data centers rarely process
this kind of lopsided I/O access patterns. In many real-world
workloads, there are frequent mixes of read and write requests,
and locality or hotness at the data.

In this paper, we propose DapDB, a LMS-tree based key-
value store which directly manage internal parallelism of SSD
taking its application context and I/O pattern into account.
We design and implement application-driven flash manage-
ment scheme that dynamically changes the arrangement of
NAND-flash’s internal parallel units on DapDB. The main
contributions of this work are listed as follows:

oc bench: Preliminary experimental evaluation. We de-
signed and implemented FIO-like benchmark tool called
oc bench for Open-Channel SSD [12]. oc bench is a tool
for evaluating device performance, changing many parameters,
such as number of threads or file size, as well as existing
benchmark tools such as fio and iometer. In addition, oc bench
can determine physical address of data to be stored by utilizing
the features of Open-Channel SSD. We evaluated the I/O
performance of NVMe-based SSD, a Open-Channel SSD,
when read requests are isolated from write requests physically
on NAND flash. To isolated them, we configured each I/O
thread access their own region without interference of other
I/O threads by dedicated LUNs per I/O threads. The evaluation
results demonstrate the overall performance is improved by up
to 220% compared to the baseline that each thread use entire
LUNs greedily.

I/O type isolation through application-driven flash man-
agement. In order to apply the read/write isolation scheme
in oc bench to DapDB, we modified the RocksDB storage
backend so that the write requests of different I/O types
(e.g., LOG file, Level 0 SST file, Compaction etc.) does
not physically overlap within the NAND Flash each other.
Unlike micro-benchmark tool(e.g., FIO or oc bench), database
applications must read data at the specific location where
the data physically written. Thus, DapDB can not completely
isolate read and write requests in the SSD physically. However,
the unique characteristics of LSM-tree base database running
as append-only and the write-only files (Write Ahead Log) can
mitigate the mixing of read and write in runtime. We carefully
evaluated DapDB under various read:write ratio using micro
benchmark tool. The result represent that DapDB reduce
average read response time by 43% compared to the baseline
that works in a greedy manner.

Dynamic arrangement of NAND-flash parallelism In
workload that read and write requests are frequently mixed,
DapDB shows improves performance, but in other workloads
such as read-only or write-only, existing scheme that make
the most of parallelism performs better than our DapDB. To
ensure that DapDB is flexible and work best for all workloads,
we added dynamic LUNs arrangement scheme to DapDB. In
the write-intensive workload that relatively requests are not
mixed frequently, we made each I/O type of DapDB utilize
entire LUNs to support high parallelism. To determine the
arrangement of LUNs by analyzing the nature of the workload
at runtime, we made simple count-based workload profiler



on DapDB’s storage backend. We evaluated DapDB under a
workload which the nature of the workload is changed during
runtime. Evaluation result shows that DapDB responds flexibly
to changing workloads and performed better than static LUNs
arrangement scheme.

II. BACKGROUND

A. Log-Structured Merge tree based Database

LSM-tree data structure is used in many modern key-value
stores and storage systems to provide fast I/O services. It
stores data in an append-only manner and thus has a fast write
performance. In detail, the incoming key-value pairs from
clients are written in sorted order in the in-memory write buffer
called memtable. At the same time, Write Ahead Logging
(WAL) files are written to persistent storage (HDD, SSD, etc.)
for recovery in case of power faliure or crash. If data is written
as much as the allocated size of memtable, background flush
threads flush this memtable to the persistent storage device as
Sorted String Table file (SST) of level 0 (L0). If a level 0 SST
file is continuously generated in this manner, the capacity of
level 0 is exceeded spoiling the tree shape of the LSM-tree
data structure. Then, a background compaction mechanism is
triggered to constrain the LSM tree shape. It read multiple
L0 SST files to merge them to a next level SST file. This
compaction mechanism works in the same way at level 0
as well as at other levels. While compaction, there may be
multiple duplicate key-value pairs among the input SST files
of compaction. Only one valid key remains in the compaction
output SST file, and the remaining invalid key-value pairs are
deleted. Through this compaction mechanism, LSM-tree-based
database can store key-value pairs in append-only manner
without in-place update. This LSM-tree algorithm is very
similar to the internal implementation of FTL which merges
physical blocks to make free blocks due to the nature of flash
memory, which cannot be in-place update. In RocksDB, our
target application, each different I/O type access to storage
device by different threads. For example, WAL files are flushed
while inserting a key-value pair into a memtable by the
foreground main I/O threads, and the L0 SST files and the
L* (* > 0)SST files are flushed by background flush threads
and background compaction threads respectively.

B. Open-Channel SSDs

Recently, a new class of SSDs, Open-Channel SSD has been
proposed as a method to manage the internal parallelism of
SSDs. They expose the geometry inside of the SSD and share
control responsibilities with the host in order to implement
and maintain features that typical SSDs implement strictly in
the device firmware. As a consequence, host could manage
data placement, I/O scheduling, and GC, etc. So, it is possible
to optimize the NAND-flash based storage device taking into
account the application context or kernel context at host side.
To facilitate this optimization and application design, Open
Channel SSDs provide a user space I/O library for Open-
Channel SSDs, a liblightnvm [11]. liblightnvm provides an
interface that allows an application to do I/O using physical
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Fig. 3: oc bench: Comparing architectures when read and
write requests are physically isolated and processed in Open-
Channel SSD using the oc benc tool.

addresses of the SSD. Using liblightnvm C API, user space
application can directly send a request to the device driver to
read, write, or even to erase data with the specific physical
address. Since NAND-flash works very sophisticatedly, there
are complicated read and write limitations such as order-
constraint for programming pages in a block, request-size-
constraint considering plane mode. To resolve this difficulty,
liblightnvm also provides a virtual block (vblk) interface,
which works similar to lib-c write, read, and pread. A vblk
consists of a set of physical blocks in the SSD and can be
created to span all parallel units (LUNs) of SSD or a subset
thereof. For example, with Open-Channel SSD equipped with
16 channels and 8 dies(chips) per channel, I/O thread can
access up to 128 independent blocks at once using vblk which
consist of 128 blocks from each of 128 LUNs.

III. oc bench: Preliminary Experimental Evaluation

We found the performance degradation due to the interfer-
ence between the read requests and write requests through
FIO experiments using commercial NVMe SSDs. In this
chapter, we demonstrate how performance can be improved
if the interference is eliminated by using Open-Channel SSDs
We used the Open-Channel SSD and the liblightnvm library
to implement a FIO-like benchmark tool called oc bench.
oc bench is able to control the number threads and request
size as it is in FIO to bench mark Open Channel SSDs under
various test scenario.

Moreover, it is also able to control which LUNs to use to run
the benchmark. That is, oc bench can adjust the arrangement
of parallel units (LUNs) by changing the mapping between
the physical blocks and the virtual block (vblk) of the SSD.
If I/O threads access to the SSD using different vblks each
other and physical blocks of SSD that make up these vblks
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Fig. 4: oc bench experiment - Comparison of performance improvement due to isolation of read, write, and overall performance
depending on vblk size.

are located in all different LUNs, interference will not occur.
Figure 3 show how the oc bench tool works when a vblk is
constructed by taking a block from each of 64 LUNs. Under
the configuration that reads request and write requests are not
isolated, contention occurs in LUNs. However, in the isolated
design, contention does not occur because only one of reading
or writing occurs in each region. We carefully experimented
with various factors such as the number of threads and the
size of the vblk.

The result of preliminary experimental evaluation is shown
in Figure 4. In most configurations, the read performance
was dramatically improved due to the R/W isolation and
increased up to 253% when there were two read and write
threads respectively. Except for a case with extreme contention
(when vblk is consist of 32 physical blocks and 64 concurrent
threads access overlapping vblks), read operations that do not
use locks generally increase performance as the number of
threads increases. In case of writes, the performance was also
improved due to reduction of interference. However, As the
number of I/O threads increases, the number of concurrent
write threads accessing a vblk increases too, resulting in a
dramatic drop in performance and thus decreasing the positive
effect of isolation. The reason is that in the current Open-
Channel SSD implementation, I/O threads use a coarse-grained
locking mechanism resulting in lock contention when trying
to write a vblk. Therefore, the smaller the number of LUNs
configuring a vblk, each thread may access to the isolated
LUN and show the result of scalable and improved perfor-
mance. Despite the unoptimized implementation of concurrent
write requests in some configuration, overall performance was
improved in all configurations up to %220 because there was
a significant performance improvement in reads.

IV. I/O TYPE ISOLATION THROUGH APPLICATION-DRIVEN
FLASH MANAGEMENT

Through preliminary experiment results using oc bench,
we found that utilizing SSD device’s entire parallelism does
not always lead to the best performance. Depending on the
workload, it may be better to compromise that read and write
requests do not affect each other, rather than using full par-
allelism for each I/O thread. Hence we implemented DapDB
based on RockDB, to apply this characteristics to real-world
applications. Unlike benchmark tools, database applications
have a lot of limitations in isolating read requests from write
requests physically because database applications must read
data from the physical location of the NAND-flash where the
data written.

However, as shown in figure 5a and Figure5b, LSM-
tree based database including RocksDB has different I/O
scheme compared to ordinary Database Management Systems
(DBMS) or storage systems. In RocksDB, three types of files
are written to persistent storage device by key-value insertions
and periodical compaction algorithm. First of all, write-only
Write Ahead Log(WAL) files are stored by main I/O thread
when key-value pairs are inserted in in-memory buffer, a
memtable. The WAL file is only read during recovery, so it
behaves as write-only in normal operation. Second, the L0
SST file is written by the background flush thread, and read
by the main I/O thread and compaction thread. At last, SST
files with a level greater than L0 are read and written by the
compaction thread, and read by the main I/O thread. Because
of these different types of files and the threads that read and
write the files, it becomes possible to isolate reads and writes
partially considering the behavior of LSM-tree data structure
and algorithm. For the simplest, since WAL is write-only,
DapDB can allocate a completely isolated LUNs for WAL
files so that other threads are not interfered at all. Also, due



to the hotness of the data, high-level SST files are likely to
have cold(rarely updated) characteristics. Consequently, they
are easy to operate with read-only manner.

Figure 5a shows a baseline, a Striping-Arrangement scheme
of DapDB, to compare with our isolated design. In this archi-
tecture, all different type of DapDB share huge virtual blocks
(vblks) spanned to all parallel units (LUNs), as in the FTL
of existing legacy SSD, to achieve high parallelism. On the
other hand, Figure 5b represents the DapDB architecture with
our optimization applied, a Isolation-Arrangement scheme.
Isolation-Arrangement makes each different I/O type is writ-
ten to its dedicated LUNs. Under the Isolation-Arrangement
scheme, vblks are constructed using only LUNs which do not
overlap each other depending on the type of vblk (alpha, beta,
theta). As a result, all write requests of different I/O type
can be isolated each other completely without interference.
Although main I/O threads and compaction threads still can
read SST files from all level theoretically, reads can be
handled separately from writes as compared to the Striping-
Arrangement because of the hotness of data and LSM-tree
behavior.

A vblk is a set of physical blocks in Open-Channel SSD,
each vblk has a predefined bandwidth. This bandwidth depends
on how many LUNs the blocks that make up the vblk exist.
For example, if a vblk is configured with physical blocks
from all LUNs, this vblk has the maximum bandwidth. In our
implementation, DapDB stores each WAL file, L0 SST file,
and L* (* > 0) SST file to alpha vblk, beta vblk and theta
vblk, respectively. We divided the entire LUNs into 3:3:2 ratios
and assigned each of the divided LUNs to each type of vblk
to have them a independent writing target. To determine the
ratios for the isolated bandwidth(i.e., the number of LUNs)
assigned to the each vblk(alpha for WAL files, beta for L0
SST files and theta for L* (* > 0) SST files), we used a
heuristic method. We set the initial ratios, taking into account
the total amount of data read and written to each files of each
I/O type. Then, we adjusted the detail ratios through various
experiments. These experimental procedures and details will
not be discussed because they are beyond the scope of main
points of the paper.

As a result, isolated LUNs divided by a 3:3:2 ratio have
improved overall throughput performance over a wide range
of workloads with read percentages ranging from 10 percent
to 80 percent and dramatically reduced read latency under the
workloads with 10%-90% read percentages.

V. DYNAMIC ARRANGEMENT OF NAND-FLASH
PARALLELISM

We divide a entire of parallelism (i.e., 128) into 3 portions
and assigned each of them to the vblks depending on different
needs of parallelism for corresponding their I/O types. As
a result, DapDB with Isolation-Arrangement scheme reduce
the delay in read requests due to the long turnaround time of
the write request under the mixed reads and writes workload.
However, statically isolated arrangement of LUNs can lead to
performance degradation if the nature of the workload changes
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to extreme write-intensive which read and write do not mix
frequently because of the reduced degree of parallelism. To
address this kind of problems, we put a simple workload
profiler in the DapDB storage backend to monitor the pattern
of the workload. It is a simple and traditional profiler based
on the temporal locality of the workload pattern. The profiler
counts 2 basic operations of key-value store, the Put and
Get, for a specific period of interval to determine whether
the workload is read intensive or write intensive. This un-
complicated profiler has almost no overhead because there are
no additional calculations. Figure 5c shows how the profiler
works, and DapDB decides which arrangement parallelism to
use to store the data by this profiler. We evaluated perfor-
mance of the Dynamic-Arrangement scheme of DapDB under
rapidly changing workload of read: write ratio comparing
with Striping-Arrangement scheme and Isolation-Arrangement
scheme.

In summary, we implemented DapDB that features an
application-driven flash management scheme considering the
behavior and data structure of LSM-tree based key-value



store. In DapDB, the internal parallelism of the SSD is used
according to the context of the application in a way that
considers the interference rather than the traditional greedy
scheme. Furthermore, it works in an optimal arrangement
depending on the characteristics of the workload. The main
benefits of DapDB include: 1) each type of write requests
has their own region, thereby alleviating the delay of read
comes from the expensive turnarround time of write requests;
2) The size of vblk, the unit of erase operation in liblightnvm,
has been divided to smaller size. Therefore, the I/O blocking
overhead due to erase operation is reduced; 3) It shows
predictable performance due to reduced interference between
I/O types.

VI. EVALUATION

A. Experimental Setup

we conducted extensive experiment to evaluate DapDB by
focusing on cutting latency as well as the overall throughput
of LSM-tree based key-value store system. We used CNEX’s
Open-Channel SSD to implement application-driven flash
management scheme. The CNEX LABs Westlake SDK is
equipped with 2TB NAND MLC Flash with 16 channels and
8 parallel units (LUNs) per channel that make possible 128-
concurrent I/O execution. For experimental evaluations, we
used a 72-core Intel Xeon E7-8870 processor server machine
equipped with 384 GB DRAM, PCI 3.0 interface connected
with the Open-Channel SSD. Ubuntu 16.04 server and Linux
kernel 4.15.0 version for Open-Channel SSD [15] supported
DapDB. We implemented DapDB based on RocksDB’s mod-
ified version using Open-Channel SSD and liblightnvm [16].

B. Performance Evaluation

In this section, we evaluate the throughput and latency
performance of DapDB using db bench micro benchmark
released with RocksDB [13]. We evaluated random read and
write performance by inserting and extracting 600,000 key-
value items (i.e., 10GB) in a uniformly distributed random
order. In all experiments, we started with 100,000 keys in-
serted in advance to prevent read miss. Because our target
workload is a mixed workload of read and write requests, we
evaluated the performance of DapDB under various workloads
by changing the read-percentage parameter of db bench from
10 percent to 90 percent.

Figure 6a plots the DapDB’s overall throughput perfor-
mance under 9 different workloads which have different
percentage of read operation comparing Striping-Arrangement
scheme and Isolation-Arrangement scheme of DapDB. Except
for a workload with a read percentage of 10 percent, our
work, Isolation-Arrangement scheme, shows improved overall
throughput performance results. Also, It shows that as the
ratio of read operation decreases, the degree of performance
improvement of the Isolation-Arrangement scheme decreases.
Especially, when the read operation occupy 10 percent of the
workload, the greedy Striping-Arrangement scheme results in
better throughput performance because the read requests and
write requests are not mixed enough in the SSD. The average
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Fig. 6: Striping-Arrangement VS Isolation-Arrangement.

throughput improvement on all workloads is around 20% and
the workloads with a read percentage of 90 achieved perfor-
mance improvements of up to 47% over Striping-Arrangement
scheme.

Similarly, we evaluated average read response time which
is critical for Quality of Service(QoS). In the experiment, read
operations request data in SST files from level 0 to level 3.
Figure 6b represents the average response time results for
all read operations. In the Striping-Arrangement scheme, the
latency increases proportionally as the ratio of write requests
to workload increases. On the other hand, the Isolation-
Arrangement scheme always shows predictable performance
regardless of the percentage of write requests in the workload.
It also achieves 43%-reduced average latency performance
result and 67% reduced latency under the most write-intensive
workload. The reason for this is that the read delay can be
improved the most under the write-intensive workload which
has long-latency write requests.

We measured the read latency of each level separately for
detailed analysis of read latency. In this experiment, reading
occurred in 4 levels of SST files from level 0 to level 3. For all
workloads with a read percentage of 10 percent to 90 percent,
the Isolation-Arrangement scheme reduce average read latency
at all levels versus the Striping-Arrangement scheme and
reduce tail latency by up to 96 percent. In all experiments, the
Isolation-Arrangement scheme show predictable read latency.

In order to verify the behavior of the dynamic LUNs
arrangement scheme, we evaluated DapDB under workload
which changes its characteristics during runtime. The entire
run-time of the experiment is divided into 50 intervals, and the
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Fig. 7: Average Read Latency of key-value pair from Level-0 to Level-3 SST files
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Fig. 8: P99th Tail Latency of key-value pair from Level-0 to Level-3
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Fig. 9: Interval throughput comparison under changing workload - Striping VS Isolation VS Dynamic

interval throughput performance is plotted for each interval.
During the first 30 intervals, the workload is read-intensive
which has 10% of read-percentage, and the remaining 20
intervals, DapDB process write-intensive workloads with 90%
of read operations. Experimental result shows that perfor-
mance of the Isolation scheme represent same performance
with the dynamic approach during the first 30 intervals. On
the other hand, the Striping-Arrangement scheme shows rela-
tively deteriorated performance results due to I/O interference.
The static Isolation scheme under write-intensive workload
after the 30th interval shows performance degradation due
to degraded parallelism rather than performance improve-
ment due to eliminated interference. However, the Dynamic-
Arrangement scheme shows the best performance in all inter-
vals because the workload profiler dynamically changes the
arrangement of parallelism by monitoring the characteristics
of the changing workload.

VII. RELATED WORK

One of the solutions to solve the performance degradation
of the database system in a mixed workload of reads and
writes has been proposed using data replication [3]. In this
paper, they proposed a storage scheme called Rails that the
read performance is always predictable without interference,
even if there are write requests by having a dedicated SSD
for reading and writing and periodically synchronizing the two
SSDs. Indeed, they achieved predictable read performance just
as in a write-free environment. However, in their system, the
same data must be duplicated in the two flash storage devices
and held in different physical locations. That is, there is a
disadvantage in that the capacity of the storage device can not
be fully utilized.

Several studies have been proposed data management tech-
niques for storage devices considering application context. In
the multi-stream [4], the host gives stream information to place
data having a similar access pattern through the same stream
internally in the SSD, and the storage device utilizes it for



data storage. However, because the physical data placement
and GC are still controlled by the SSD internal FTL, the I/O
requests by the application may not work in concert with
the internal operations of the SSD such as GC and wear-
leveling. In order to solve these problems, an application-
driven flash management scheme has been proposed, and
cross-stack optimization has been attempted in consideration
of the application context and NAND-flash characteristics [5]
[19].

Our study is in line with these approaches [3], [4] in terms
of physically separating read and write requests in SSD. In
contrast, we enable adaptive SSD’s parallelism management
by fully take advantage of application context and I/O pattern.

VIII. CONCLUSION

In this paper, we present DapDB, an LSM-tree based
key-value store tailored for Open-Channel SSDs. DapDB is
designed to achieve both good performance of throughput
and latency with two main technique: Isolation-Arrangement,
Dynamic-Arrangement of parallelism. We implement DapDB
on a real Open-Channel SSD using liblightnvm, a user-
space I/O library. Experimental results show that DapDB
improves overall performance under various workloads, i.e.,
1.47× faster than existing greedy scheme that makes max-
imum use of SSD internal parallelism. Also, most im-
portantly, DapDB achieves that dramatically reduced aver-
age and tail read latency up to 67% and 96% respec-
tively depending on the workload. DapDB’s performance fain
mainly come from eliminated interference between I/O types
and dynamic arrangement of parallelism based on work-
load characteristics. The open-source DapDB is available at
https://github.com/RockyLim92/rocksdb.
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