Application-Driven Flash Management: LSM-tree based Database
Optimization through Read/Write Isolation

Heerak Lim
Seoul National University
rockylim@snu.ac.kr

Abstract

The role of high-performance storage devices is becoming increas-
ingly important in the web-scale infrastructure. In particular, next-
generation storage devices such as Non Volatile Memory Express
(NVMe) based solid state devices (SSDs) are being actively intro-
duced to data centers. However, applications running on data cen-
ters do not take into account the characteristics of these high-
performance storage devices. We focus on the performance degra-
dation of the mixed workload of reads and writes when using
high-performance storage devices in the log-structured merge tree
(LSM-tree) based database systems. To address this problem, we
propose application-driven flash management scheme to isolate
read/write operation.

ACM Reference format:

Heerak Lim. 2018. Application-Driven Flash Management: LSM-tree based
Database Optimization through Read/Write Isolation. In Proceedings of
Middleware’18, Rennes, France, December 2018, 2 pages.

DOI: 10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Recently, as the cloud market is growing rapidly, data centers are
actively introducing next-generation high-performance storage
devices. Database systems are the most typical applications that
should provide a highly reliable service with high-performance
storage devices in data centers. Especially, a lot of modern I/O
intensive database applications including RocksDB [4] and Cas-
sandra [1] use log-structured merge trees (LSM-tree) [9]. However,
these database systems do not fully utilize the capabilities of the
next-generation storage devices such as NVMe because it does not
reflect the characteristics of the recent high-performance storage
devices. As a result, the database system provides performance that
does not take full advantage of the high bandwidth of the storage
device.

The next-generation storage devices, such as NAND-based NVMe
SSDs, have good performance for read operations, but they perform
poorly when read requests are mixed with write operations. Such
performance degradation is caused by internal flash translation
layer (FTL) processes such as garbage collection (GC) within the
SSD delay the I/O operations [5, 8] and different response time be-
tween reads and writes. Furthermore, with LSM-trees, compaction
causes read and write requests to be intermixed very frequently to
the storage devices. The main contributions of this work are
to introduce a preliminary experimental evaluation of such per-
formance drop and present a design that overcomes the existing
problem through application-driven flash management.

We perform the following experiments on the machine with
512 GiB Samsung 960 Pro NVMe SSD. To evaluate raw device per-
formance and database application, we use FIO benchmark and

Middleware’18, Rennes, France
2018. 978-x-xxxx-xxxX-X/YY/MM. .. $15.00
DOI: 10.1145/nnnnnnn.nnnnnnn

F10, Sequential R/W Mix

300

250

200

150

100

Throughtput (MB/sec)

50

0 10 20 30 40 50 60 70 80 90 100
Read Percentage (%)

Figure 1. FIO benchmark - read and write throughput comparison
based on read percentage: the read and write performance drops
sharply instead of falling linearly as they are mixed.

RocksDB - db_bench, Random R/W Mix

200.0
oo [D I

0 10 20 30 40 50 60 70 80 90 100
Read Percentage (%)

Figure 2. RocksDB’s benchmark tool - read and write throughput
comparison based on read percentage: the read performance drops
sharply instead of falling linearly as it is mixed with writes. Note
that db_bench parameters not specified are set as default values.

RocksDB benchmark tool (db_bench). Figure 1 shows that perfor-
mance drops dramatically on workloads with read and write. In
particular, when read percentage is 50, that is, in a workload where
reads and writes are half occupied, the read performance is about
25.6% compared with read-only. Also, write only performs 26.8%
compared with write-only. We have seen how this mixed workload
affects the performance of the applications actually used. Figure 2
illustrates that the read performance is seriously degraded as the
write request rate of the workload increases. Notably, even if write
occupies only 10 percent of the workload, read performance drops
to about a quarter of read-only.

2 RELATED WORK

One of the related solutions to solve the performance degradation in
database systems caused by the workload of mixed reads and writes
is presented in [10]. This research introduced Rails, an approach
based on redundancy that physically separates reads from writes
to achieve predictable read performance in the presence of writes.
This study demonstrated that data replication design enables the

Middleware’18, December 2018, Rennes, France

predictable and efficient performance of read/write workloads and
evaluate it through benchmark and real workload experiments.
However, this approach is limited in that the embedded FTL still
manages SSD internal operations such as data placement or garbage
collection (GC). Thus, the I/Os which an application issues and SSD
internal operations will not operate in harmony.

Many researchers suggest the architectures that streamline the
data path along with their application context. Multi-stream [7]
places data together internally on the flash by channeling the data
with similar aging through the same stream. However, there is a
limitation that data placement and GC are controlled by the embed-
ded FTL and it sets a ceiling on the number of streams. Recently,
Open-Channel SSDs [3] has been proposed as a method to manage
the internal parallelism of SSDs. They expose the geometry inside
of the SSD and share control responsibilities with the host in order
to implement and maintain features that typical SSDs implement
strictly in the device firmware. As a consequence, host can manage
data placement, I/O scheduling, and GC.

Another study [6] introduced a novel architecture using Open-
Channel SSDs that an application implements their own FTL. In
this study, authors consider the tendency of LSM-trees to build
an application-driven FTL. They implemented RocksDB backend
storage engine for Open-Channel SSDs and introduced liblightnvm,
a user-space I/O library for Open-Channel SSDs [2]. With their
scheme, reads are not disturbed by writes of other threads, so they
show predictable performance.

In section 3, we describe the limitations of previous related stud-
ies and present a new solution to overcome them.

3 APP-DRIVEN FLASH MANAGEMENT

Recently, a lot of I/O intensive applications including RocksDB
use LSM-tree as its data structure, which features fast write per-
formance through append-only fashion writes. Because LSM-trees
have internal implementations that are logically similar to FTL, user-
space FTLs can be implemented without significant performance
overhead. In the previous study [10], it sacrificed the capacity of
the SSD for predictable performance because of the replication de-
sign. Another study [6] demonstrated the possibility of application-
driven FTLs using Open-Channel SSDs and obtained the predictable
performance. However, this resulted in a drop in the parallelism
of the SSD, causing lower overall performance compared with the
high bandwidth of the SSDs.

To address above problems we propose optimized application-
driven flash management for LSM-tree based database systems.
We chose RocksDB as our target database system. In RocksDB, all
incoming data is buffered in the memtable and then persisted as a
level 0 sorted string table (.sst file) when the buffer is flushed. When
compaction is triggered, these sst files are merged with the different
sst files to form a next level sst files, and the existing sst files are
outdated. This process is similar to managing invalid blocks in FTL.
Therefore, these outdated sst files will eventually become the target
of the GC and will be erased in flash. SSDs maintain parallel units
that can internally process I/Os in parallel. A parallel unit could
be a channel, die, or a complex of them. If a 16-channel SSD has
8 dies per channel, there are 128 parallel I/O units in total. These
parallel units are independent of each other and do not affect each
other’s operation. If an I/O thread gathers all the data of each sst
file into parallel unit(s) in the SSD, sst files can be read or written
without disturbance of other I/O threads since each of sst files

Heerak Lim

has it’s dedicated parallel unit(s). In addition, when compaction
threads read sst files to merge them, there is no conflict with the
write request of other I/O threads, so unnecessary delay due to
latency difference between read and write disappears. In other
words, read and write are separated, reducing unnecessary latency
and achieving predictable performance.

We can simply implement the above I/O isolation by mapping
one sst file to one parallel unit. Since a sst file is not distributed
across multiple parallel units, data with similar age and access
patterns will be collected in a single sst file. That means, there is a
tendency that read and write are not mixed within the single sst
file. However, through several other evaluations, we have found
that this design will eventually degrade parallelism and lead to
overall performance degradation. Static mapping of sst files to a
parallel unit does not take into account the size or level of the sst
file, which can cause applications fail to fully utilize the parallelism
of the storage device.

To address this problem, we will implement LSM-tree based FTL
that can fully utilize the parallelism of the storage device while
accomplishing the above-mentioned read/write isolation. For exam-
ple, parallel units can be dynamically allocated taking into account
the size and the level of the sst file. The LSM-tree based FTL scheme
will be evaluated against the design with maximized parallelism
that has been considered as the best scheme for the high through-
put, which show low and unpredictable performances under the
mixed workload.

4 CONCLUSION

We expect the database system to be able to take advantage of
high-performance storage devices as well as provide predictable
performance. Additionally, we presuppose that this work would
be a successful study of Software-Defined Storage solution using
Open-Channel SSDs, a newly emerging storage stack.

5 ACKNOWLEDGEMENTS

This work is supported by the Samsung Electronics Co., Ltd. in
Korea and is supervised by Prof. Heon Y. Yeom. I would like to
express my gratitude to Prof. Heon Y. Yeom and Hwajung Kim for
excellent advice.

References

[1] Apache Cassandra, http://cassandra.apache.org/.

[2] liblightnvm - User space I/O library for Open-Channel SSDs,
http://lightnvm.io/liblightnvm.

[3] Open-Channel Solid State Drive Interface
https://openchannelssd.readthedocs.io/en/latest/specification.

[4] RocksdB, https://rocksdb.org.

[5] Feng Chen, Rubao Lee, and Xiaodong Zhang. 2011. Essential roles of exploiting
internal parallelism of flash memory based solid state drives in high-speed data
processing. In High Performance Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on. IEEE, 266-277.

[6] Javier Gonzalez, Matias Bjerling, Seongno Lee, Charlie Dong, and Yiren Ron-
nie Huang. 2016. Application-Driven Flash Translation Layers on Open-Channel
SSDs. (03 2016).

[7] Jeong-Uk Kang, Jeeseok Hyun, Hyunjoo Maeng, and Sangyeun Cho. 2014. The
Multi-streamed Solid-State Drive.. In HotStorage.

[8] Woon-Hak Kang, Sang-Won Lee, Bongki Moon, Yang-Suk Kee, and Moonwook
Oh. 2014. Durable write cache in flash memory SSD for relational and NoSQL
databases. In Proceedings of the 2014 ACM SIGMOD international conference on
Management of data. ACM, 529-540.

[9] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. 1996. The

log-structured merge-tree (LSM-tree). Acta Informatica 33, 4 (1996), 351-385.

Dimitris Skourtis, Dimitris Achlioptas, Noah Watkins, Carlos Maltzahn, and

Scott A Brandt. 2014. Flash on Rails: Consistent Flash Performance through

Redundancy.. In USENIX Annual Technical Conference. 463-474.

Specification,

[10

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	3 APP-DRIVEN FLASH MANAGEMENT
	4 CONCLUSION
	5 ACKNOWLEDGEMENTS
	References

